Deep Wide-field Space-based Imaging and Galactic Structure

Neill Reid: STScI

Wide-field surveys (POSSI&II, 2MASS, SDSS, SNAP, etc.) don't just image galaxies.

Starcount analyses probe the structure of our Galaxy \Rightarrow provide insight to galaxy formation

SNAP permits detailed study of the Galactic halo*, in situ at Z > 5 kpc. \Rightarrow first major epoch of star formation Still the only halo where such detailed observations are possible.

- * Galactic halo \equiv old, metal-poor stellar population
- \bullet Age: 12 to 14 Gyrs
- Mass: $few \times 10^9 M_{\odot}$
- Local number density: $\sim 1:200$ relative to disk
- Metallicity: < 0.1 solar
- Kinematics: Low rotation, high velocity dispersion
- Spatial distribution: near-spheroidal

 $A(m)=\int$ volume . density A(m) reaches maximum at approximately twice the effective scaleheight

Starcount analysis relies on photometric distance estimators Ground-based surveys probe magnitudes brighter than V \sim 21 to 22 \Rightarrow M_v < +5 in the halo

- Red giants steep CMD, poor distance estimator
- Subgiants abundance sensitivity, poor distance estimator
- Turnoff stars steep CMD, poor distance estimator
- HB stars abundance sensitivity, moderate distance estimator

Need to go deeper to reach unevolved subdwarf main sequence.

Galaxy counts vs. star counts at b=30, 60, 90°

- \bullet Galaxies dominate counts at faint magnitudes in high-latitude fields outnumber stars by factors of 10 to 100 at V> 21
- Galactic structure analysis requires high accuracy star/galaxy separation techniques

- Analysis of groundbased observations is limited by seeing
- Require large fields of view so AO is little help
- Galaxies basically look like K stars can't separate by colour
- Fainter than $R\sim26.5/27$, a significant number of galaxies are expected to have dimensions of <0.1 arcsecond
 - \rightarrow limit for purely morphological star count studies (use colour selection+proper motions?)
- Brighter than R=26.5, space-based observations provide a significant improvement over ground-based measurements

Expected stellar surface densities

\mathbf{R}	N(star)	N(galaxy)	Stars/sq. deg.	$\langle M_R \rangle$
21.5	30	99	2570	5
22.5	33	208	2830	6
23.5	44	435	3770	7
24.5	75	911	6430	8

Based on Keck PSR1640 observations (Reid et al, AJ, 1996)

The density distribution in the halo

- 1. SDSS RR Lyrae data suggest halo truncation at ~ 40 kpc. (Ivezic et al., 2000). Do subdwarfs show the same effect?
- 2. Spatial sub-clustering: 1 sq. deg. \equiv 30,000 pc² at 10 kpc. kinematic sub-structure (moving groups) is present in the halo (mergers?) how uniform/well-mixed are halo field stars

Proper motions at moderate—large distances above the Plane

 $\mu = \frac{V_T}{4.74r} yr^{-1}$, for V_T in kms⁻¹, r in pc. So $\mu = 1$ mas yr⁻¹ for $V_T = 25$ kms⁻¹ at 5 kpc.

 \Rightarrow can examine kinematics (dispersion, rotation, moving groups) for 1 < Z < 7 kpc. i.e. disk/halo transition region

What about cool white dwarfs?

Data from Liebert et al. (1988) as updated by Mendez & Ruiz (2001). Cutoff in $\Phi(M_V)$ can probe the age of thick disk/halo, although.... Halo \rightarrow expect cutoff at M_V ~ 17.5 fully sampled only at $V \sim 34$!

What about dark matter (Oppenheimer et al, Nelson et al) \rightarrow almost certainly irrelevant

$$H_v = V + 5 + 5 \log \mu = M_v + 5 \log V_T - 3.37$$

 $(H_V, (V-I))$ sequence traces $(M_V, (V-I))$ sequence, offset by an amount dependent on the mean kinematics of the underlying population: disk $\sim 80 \text{ kms}^{-1}$; halo $\sim 275 \text{ kms}^{-1}$ for Groth strip

Groth strip white dwarfs match low-velocity white dwarfs (i.e. disk) not classical, non-rotating dark matter

If they're dark matter,

- 1. Why do they match the younger cooling branch?
- 2. Why is the dark matter halo rotating?
- 3. Why is the (near-contemporary) stellar halo not rotating?

Evidence of inconsistency with model A \neq evidence in favour of model B

The halo subdwarf luminosity function

For extreme halo stars ([M/H]<-1.5), H-burning limit falls at M $_V\sim15$ \rightarrow limited sampling volume

Is $\Psi(M)$ flatter in the field than in most globular clusters?

Science issues: summary

- Halo density law from counts at faint magnitudes is there an edge to the halo?
 Spatial sub-clustering - how well-mixed is the halo?
 Vertical density distribution for very late-type disk dwarfs.
- 2. Proper motions for faint halo stars \rightarrow kinematics in thick disk/halo at Z>1.5 kpc.
- 3. Probe halo luminosity function at faint absolute magnitudes in situ
- 4. Repeat observations should allow identification of faint variable stars (statistics on flares in low-mass halo subdwarfs?), contact binaries and, in particular, eclipsing binary systems ⇒ potential mass measurements (if the candidates are accessible to spectroscopy)

Limitations

- 1. Limited coverage in $(l, b) \Rightarrow$ limited sensitivity to certain structural parameters
- 2. Star/galaxy separation requires well understood psf as f(position)
- 3. Even relative astrometry requires stable psf as f(position)

Deep starcount studies demand stable, reliable, well-calibrated images \rightarrow but so does the supernova project....